SSE图像算法优化系列六:OpenCv关于灰度积分图的SSE代码学习和改进。

  近年来径直沉迷于SSE方面包车型地铁优化,实在找不到想学学的参考资料了,就拿个台式机放在腿上翻翻OpenCv的源代码,无意中见到了OpenCv中有关积分图的代码,仔细研习了一番,觉得OpenCv对SSE的灵活运用真的做的很好,这里记录下自身对该段代码的品尝并将其思路扩充到其余通道数的图像。

     该中央代码位于:Opencv
3.0\opencv\sources\modules\imgproc\src\sumpixels.cpp文件中。

   
 我们贴出最感兴趣的一某些代码以便分析:

    bool operator()(const uchar * src, size_t _srcstep,int * sum, size_t _sumstep,double * sqsum, size_t, int * tilted, size_t,Size size, int cn) const
    {
        if (sqsum || tilted || cn != 1 || !haveSSE2) return false;
        // the first iteration
        memset(sum, 0, (size.width + 1) * sizeof(int));
        __m128i v_zero = _mm_setzero_si128(), prev = v_zero;
        int j = 0;
        // the others
        for (int i = 0; i < size.height; ++i)
        {
            const uchar * src_row = src + _srcstep * i;
            int * prev_sum_row = (int *)((uchar *)sum + _sumstep * i) + 1;
            int * sum_row = (int *)((uchar *)sum + _sumstep * (i + 1)) + 1;
            sum_row[-1] = 0;
            prev = v_zero;
            j = 0;
            for ( ; j + 7 < size.width; j += 8)
            {
                __m128i vsuml = _mm_loadu_si128((const __m128i *)(prev_sum_row + j));
                __m128i vsumh = _mm_loadu_si128((const __m128i *)(prev_sum_row + j + 4));
                __m128i el8shr0 = _mm_loadl_epi64((const __m128i *)(src_row + j));
                __m128i el8shr1 = _mm_slli_si128(el8shr0, 1);
                __m128i el8shr2 = _mm_slli_si128(el8shr0, 2);
                __m128i el8shr3 = _mm_slli_si128(el8shr0, 3);
                vsuml = _mm_add_epi32(vsuml, prev);
                vsumh = _mm_add_epi32(vsumh, prev);
                __m128i el8shr12 = _mm_add_epi16(_mm_unpacklo_epi8(el8shr1, v_zero),
                                                 _mm_unpacklo_epi8(el8shr2, v_zero));
                __m128i el8shr03 = _mm_add_epi16(_mm_unpacklo_epi8(el8shr0, v_zero),
                                                 _mm_unpacklo_epi8(el8shr3, v_zero));
                __m128i el8 = _mm_add_epi16(el8shr12, el8shr03);
                __m128i el4h = _mm_add_epi16(_mm_unpackhi_epi16(el8, v_zero),
                                             _mm_unpacklo_epi16(el8, v_zero));
                vsuml = _mm_add_epi32(vsuml, _mm_unpacklo_epi16(el8, v_zero));
                vsumh = _mm_add_epi32(vsumh, el4h);
                _mm_storeu_si128((__m128i *)(sum_row + j), vsuml);
                _mm_storeu_si128((__m128i *)(sum_row + j + 4), vsumh);
                prev = _mm_add_epi32(prev, _mm_shuffle_epi32(el4h, _MM_SHUFFLE(3, 3, 3, 3)));
            }
            for (int v = sum_row[j - 1] - prev_sum_row[j - 1]; j < size.width; ++j)
                sum_row[j] = (v += src_row[j]) + prev_sum_row[j];
        }

   
 为了印证更有益于,那里贴出我做的平常C语言的代码和再一次优化后的SSE代码。

     普通C语言:

 void GetGrayIntegralImage(unsigned char *Src, int *Integral, int Width, int Height, int Stride)
 {
      memset(Integral, 0, (Width + 1) * sizeof(int));                    //    第一行都为0
      for (int Y = 0; Y < Height; Y++)
      {
          unsigned char *LinePS = Src + Y * Stride;
          int *LinePL = Integral + Y * (Width + 1) + 1;                 //    上一行位置            
          int *LinePD = Integral + (Y + 1) * (Width + 1) + 1;           //    当前位置,注意每行的第一列的值都为0
          LinePD[-1] = 0;                                               //    第一列的值为0
          for (int X = 0, Sum = 0; X < Width; X++)
          {
             Sum += LinePS[X];                                          //    行方向累加
             LinePD[X] = LinePL[X] + Sum;                               //    更新积分图
          }
     }
}

       优化后的SSE算法:

void GetGrayIntegralImage(unsigned char *Src, int *Integral, int Width, int Height, int Stride)
{
    memset(Integral, 0, (Width + 1) * sizeof(int));            //    第一行都为0
    int BlockSize = 8, Block = Width / BlockSize;
    for (int Y = 0; Y < Height; Y++)
    {
        unsigned char *LinePS = Src + Y * Stride;
        int *LinePL = Integral + Y * (Width + 1) + 1;                //    上一行位置            
        int *LinePD = Integral + (Y + 1) * (Width + 1) + 1;          //    当前位置,注意每行的第一列的值都为0
        LinePD[-1] = 0;
        __m128i PreV = _mm_setzero_si128();
        __m128i Zero = _mm_setzero_si128();
        for (int X = 0; X < Block * BlockSize; X += BlockSize)
        {
            __m128i Src_Shift0 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(LinePS + X)), Zero);        //    A7 A6 A5 A4 A3 A2 A1 A0
            __m128i Src_Shift1 = _mm_slli_si128(Src_Shift0, 2);                                            //    A6 A5 A4 A3 A2 A1 A0 0     
            __m128i Src_Shift2 = _mm_slli_si128(Src_Shift1, 2);    //    移位改成基于Shift0,速度慢,Why?    //    A5 A4 A3 A2 A1 A0 0  0
            __m128i Src_Shift3 = _mm_slli_si128(Src_Shift2, 2);                                            //    A4 A3 A2 A1 A0 0  0  0
            __m128i Shift_Add12 = _mm_add_epi16(Src_Shift1, Src_Shift2);                                   //    A6+A5 A5+A4 A4+A3 A3+A2 A2+A1 A1+A0 A0+0  0+0
            __m128i Shift_Add03 = _mm_add_epi16(Src_Shift0, Src_Shift3);                                   //    A7+A4 A6+A3 A5+A2 A4+A1 A3+A0 A2+0  A1+0  A0+0    
            __m128i Low = _mm_add_epi16(Shift_Add12, Shift_Add03);                                         //    A7+A6+A5+A4 A6+A5+A4+A3 A5+A4+A3+A2 A4+A3+A2+A1 A3+A2+A1+A0 A2+A1+A0+0 A1+A0+0+0 A0+0+0+0
            __m128i High = _mm_add_epi32(_mm_unpackhi_epi16(Low, Zero), _mm_unpacklo_epi16(Low, Zero));    //    A7+A6+A5+A4+A3+A2+A1+A0  A6+A5+A4+A3+A2+A1+A0  A5+A4+A3+A2+A1+A0  A4+A3+A2+A1+A0
            __m128i SumL = _mm_loadu_si128((__m128i *)(LinePL + X + 0));
            __m128i SumH = _mm_loadu_si128((__m128i *)(LinePL + X + 4));
            SumL = _mm_add_epi32(SumL, PreV);
            SumL = _mm_add_epi32(SumL, _mm_unpacklo_epi16(Low, Zero));
            SumH = _mm_add_epi32(SumH, PreV);
            SumH = _mm_add_epi32(SumH, High);
            PreV = _mm_add_epi32(PreV, _mm_shuffle_epi32(High, _MM_SHUFFLE(3, 3, 3, 3)));
            _mm_storeu_si128((__m128i *)(LinePD + X + 0), SumL);
            _mm_storeu_si128((__m128i *)(LinePD + X + 4), SumH);
        }
        for (int X = Block * BlockSize, V = LinePD[X - 1] - LinePL[X - 1]; X < Width; X++)
        {
            V += LinePS[X];
            LinePD[X] = V + LinePL[X];
        }
   }

  我们先来分解下那段代码的SSE优化进度吧。

   
 首先,用_mm_loadl_epi64贰次性加载八个字节数据到XMM寄存器中,当中寄存器的高6个人位0,此时寄存器的数额为:

      高位            0  0  0  0  0  0  0
 0 A7 A6 A5 A4 A3 A2 A1 A0        低位   (8位)

   
 因为涉及到加法,并且最大为7个字节数据的加法,由此转换成1八个人数据类型,使用_mm_unpacklo_epi8结合zero即可达成。

     此时XMM寄存器内容变为:

           Src_Shift0    A7 A6 A5 A4 A3 A2 A1 A0    (16位)

     此后有3回活动分获:

            Src_Shift1    A6 A5 A4 A3 A2 A1 A0 0       (16位)
            Src_Shift2    A5 A4 A3 A2 A1 A0 0  0     (16位)
            Src_Shift3    A4 A3 A2 A1 A0 0  0  0         (16位)

  通过_mm_add_epi16分别对4组16位数据进行8次相加:

            Shift_Add12   A6+A5 A5+A4 A4+A3 A3+A2 A2+A1 A1+A0 A0+0  0+0   (16位)
            Shift_Add03   A7+A4 A6+A3 A5+A2 A4+A1 A3+A0 A2+0  A1+0  A0+0   (16位)  

  再对他们进行相加:

        Low            A7+A6+A5+A4 A6+A5+A4+A3 A5+A4+A3+A2 A4+A3+A2+A1 A3+A2+A1+A0 A2+A1+A0+0 A1+A0+0+0 A0+0+0+0

   
 注意到低2个人的十四人数一度是连接相加的多寡了,只要将他们转移为30人就足以一贯利用。

     而通过 __m128i High =
_mm_add_epi32(_mm_unpackhi_epi16(Low, Zero),
_mm_unpacklo_epi16(Low, Zero)); 这一句则足以把前边的高4位三番五次相加的值拼接起来获得:

       High                
 A7+A6+A5+A4+A3+A2+A1+A0  A6+A5+A4+A3+A2+A1+A0  A5+A4+A3+A2+A1+A0
 A4+A3+A2+A1+A0

  后面的操作则顺理成章了。

     
 注意到自我大旨的更改在于原始代码中的el8shr12和el8shr03的盘算中的_mm_unpacklo_epi8被免去了,而在el8shr0一句中追加了多个_mm_unpacklo_epi8,由此少了三回这么些函数,很鲜明那样做是不会转移总结结果的。

     
 别的源代码中的部分_mm_add_epi16被我用_mm_add_epi32代表了,那至关心珍视若是因为用_mm_add_epi32意思更强烈,而且由于高位数据为0,他们的执行结果不会有别的区别。

   还有有个别在测试时发现,假诺Src_Shift2,Src_Shift3的位移是基于Src_Shift0,即接纳如下代码:

__m128i Src_Shift2 = _mm_slli_si128(Src_Shift0, 4);    
__m128i Src_Shift3 = _mm_slli_si128(Src_Shift0, 6);

  
速度会有较为分明的下滑,难道说移动的位数多少和CPU的耗费时间有关?

     
以上是灰度形式的算法,在自己的台式机电脑上,SSE优化后的说话就算扩充了成千成万,可是实施效用约能提拔3/10,可是在部分PC上,普通的C和SSE优化后却尚未啥速度分别了,那也不亮堂是干什么了。

     
即便是针对2二人依旧叁14个人图像,基本的优化思想是同样的,可是有更多的细节需求协调在意。

     
2四人照旧叁十一人图像在别的机器配置上,速度都能有30%的晋级的。

     
依然感到那种算法用文字很难发挥清楚,用代码再添加本身的上空组成大概更能了然呢。

 

图片 1